preted as a dichloromethane molecule with a partial occupancy on two disordered sites.

We thank Dr P. Thomas for collecting the data. One of us (BM) thanks the Royal Society and the CNRS for support.

References

Carruthers, J. R. (1975). CRYSTALS User Manual. Oxford Univ. Computing Laboratory.
Dirand, J., Ricard, L. \& Weiss, R. (1975). Inorg. Nucl. Chem. Lett. 11, 661-664.
Green, M. L. H. \& Bunker, M. (1978). Unpublished results.
Hordvik, A. (1966). Acta Chem. Scand. 20, 1885-1891.

Kubas, G. J., Spiro, T. G. \& Terzis, A. (1973). J. Am. Chem. Soc. 95, 273-274.
Küllmer, V., Röttinger, E. \& Vahrenkamp, H. (1977). J. Chem. Soc. Chem. Commun. pp. 782-783.

Müller, A., Nolte, W. O. \& Krebs, B. (1978). Angew. Chem. Int. Ed. Engl. 17, 279.
Rahman, R., Safe, S. \& Taylor, A. (1970). Q. Rev. Chem. Soc. 24, 208-237.
Rollett, J. S. (1965). Computing Methods in Crystallography, p. 40. Oxford: Pergamon Press.
Stieffel, E. I. (1977). Prog. Inorg. Chem. 22, 1-223.
Terzis, A. \& Rivest, R. (1973). Inorg. Chem. 12, 2132 2136.

Vahrenkamp, H. (1978). Angew. Chem. Int. Ed. Engl. 17, 379-392.
Vergamini, P. J. \& Kubas, G. J. (1976). Prog. Inorg. Chem. 21, 261-282.
Watkin, D. J. (1972). Acta Cryst. A28, 33-35.

Acta Cryst. (1979). B35, 174-177

Dimeric Chlorobis(triphenylphosphine)silver*

By Anders Cassel \dagger
Division of Inorganic Chemistry 1, Chemical Center, University of Lund, PO Box 740, S-220 07 Lund 7, Sweden

(Received 21 June 1978; accepted 16 October 1978)

Abstract

Ag}\left(\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{P}_{2}\right) \mathrm{Cl}\right]_{2}\), triclinic, $P \overline{1}, a=$ 10.308 (5), $b=12.608$ (4), $c=13.893$ (6) $\AA, a=$ 113.36 (4), $\beta=110.29$ (3), $\gamma=75.02$ (3) ${ }^{\circ}, V=1539$ $\AA^{3}, Z=1, D_{c}=1.44, D_{o}=1.45 \mathrm{Mg} \mathrm{m}^{-3}$. Two Ag atoms are joined through a double Cl bridge. To each Ag are also coordinated two P atoms from two triphenylphosphine molecules. The coordination polyhedron around Ag is a distorted tetrahedron. The crystal structure is thus built up from discrete dimeric molecules.

Introduction. Prismatic crystals of the title compound were obtained on the slow cooling to room temperature of a warm $\mathrm{CH}_{3} \mathrm{CN}$ solution of $\mathrm{AgNO}_{3},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{NCl}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$; the molar ratio was $1: 1: 2$. A single crystal defined by the six planes (001), (001), (101), (101), (110) and ($\overline{1} 10$) was selected. The distances between parallel planes were $0.07,0.08$ and 0.08 mm .

The intensity measurements were carried out on a computer-controlled four-circle diffractometer (CAD4) equipped with a graphite monochromator and using $\mathrm{Cu} K \alpha$ radiation. The $\omega-2 \theta$ scan technique, with a scan

[^0]interval of $\Delta \omega=(0.60+0.40 \tan \theta)^{\circ}$, was employed. The background was measured for one quarter of the scan time at each end of the peak-scan interval. 6181 reflections were recorded in the range $5^{\circ}<\theta<50^{\circ}$, and 4821 with $I>2 \sigma(I)$ were used in the subsequent calculations. The standard deviation $\sigma(I)$ is based on counting statistics. The intensities of three standard reflections measured regularly were used to scale the intensities of the other reflections. The intensity decrease was linear with respect to exposure time and the total decrease was $17 \cdot 6 \%$. Corrections were made for Lorentz, polarization and absorption effects [$\mu(\mathrm{Cu}$ $\left.K(x)=7.32 \mathrm{~mm}^{-1}\right]$. No corrections for anomalous dispersion or secondary extinction were made.

The positions of $\mathrm{Ag}, \mathrm{Cl}, \mathrm{P}$ and C were determined using the Patterson function, successive electron density syntheses and least-squares refinements. Scattering factors were taken from International Tables for X-ray Crystallography (1974). Ag, Cl and P were refined anisotropically and C isotropically. The H atoms were not included. In the final difference synthesis no peaks larger than 1.8 e \AA^{-3} were found. Two peaks of 1.8 and $1.6 \mathrm{e} \AA^{-3}$ are residuals from the electron density of silver. Apart from these no peaks larger than $1 \cdot 1$ e \AA^{-3} were found. The quantity minimized was $\sum w_{i}\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ giving $R=\sum| | F_{o} \mid-$
$\left|F_{c}\right|\left|/ \sum\right| F_{o} \mid=0.065$ and $R_{w}=\left[\sum w_{i}\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} /\right.$ $\left.\sum w_{i} \mid F_{o}{ }^{2}\right]^{0} / 2=0.084$ in the final refinement. With $w_{i}^{-1}=\sigma^{2}\left(F_{o}\right)+0 \cdot 020\left|F_{o}\right|^{2}, w_{i}\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ was nearly constant for different $\sin \theta$ and $\left|F_{o}\right|$ intervals. The shifts in the positional parameters were less than 5% of the standard deviations. Final positional parameters are given in Table 1.* Selected and mean values of the interatomic distances and angles are given in Tables 2 and 3. All calculations were carried out on the Univac 1108 computer in Lund.

Discussion. The crystal structure is built up from dimeric molecules: $\left[\mathrm{Ag}\left(\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{P} 2\right) \mathrm{Cl}\right]_{2}$, ' AgClP_{2} '. A stereoview of the molecule is shown in Fig. 1. When the H atoms in ' AgClP_{2} ' were geometrically located $1.00 \AA$ from the corresponding C atoms, no $\mathrm{H} \cdots \mathrm{H}$ or $\mathrm{Cl} \cdots \mathrm{H}$ intermolecular distances shorter than 2.28 or $2.99 \AA$, respectively, were found. The van der Waals $\mathrm{H} \cdots \mathrm{H}$ and $\mathrm{Cl} \cdots \mathrm{H}$ distances are 2.4 and $3.0 \AA$ (Pauling, 1960). Baur (1972) suggests $1.00 \AA$ for the van der Waals radius of H . This indicates that there should be no intermolecular repulsive interactions. The Ag atom prefers a tetrahedral to a trigonal configuration. Using the bridging property of the Cl atom, Ag can maintain the tetrahedral configuration through a dimerization over a double Cl bridge. In ' $\mathrm{AgClP}_{2}{ }^{\prime} \mathrm{Ag}$ is coordinated to two Cl and two P atoms in the form of a distorted tetrahedron. The smallest and the largest angles and the

[^1]distances in the coordination polyhedron are shown in Fig. 2 and Table 2. If steric hindrances are applied to the complex formation the dimerization can, however, be cancelled and three-coordinated Ag is formed (Barrow, Bürgi, Johnson \& Venanzi, 1976).
The $\mathrm{Ag}-\mathrm{Cl}$ distances $[2.741$ (2) and 2.596 (2) \AA] in ' AgClP_{2} ' differ by almost $0.15 \AA$. The average value ($2.669 \AA$) agrees well with $\mathrm{Ag}-\mathrm{Cl}$ distances found in

Fig. 1. A stereoview of the $\left[\mathrm{Ag}\left(\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{P}_{2}\right) \mathrm{Cl}\right]_{2}$ molecule showing the nonhydrogen atoms. The thermal ellipsoids are drawn to enclose 50% probability.

Fig. 2. Schematic drawing of the $\mathrm{P}_{2} \mathrm{AgCl}_{2} \mathrm{AgP}_{2}$ fragment of $1 \mathrm{Ag}\left(\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{P}_{2}\right) \mathrm{Cl}_{2}$. Distances (\AA) and selected angles $\left(^{\circ}\right)$ are given.

Table 1. Fractional coordinates $\left(\times 10^{4}\right.$, for $\left.\mathrm{Ag} \times 10^{5}\right)$ in $\left[\mathrm{Ag}\left(\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{P}_{2}\right) \mathrm{Cl}\right]_{2}$

	x	y	z	x	y	z	
Ag	$41837(5)$	$16099(5)$	$3204(4)$	$\mathrm{C}(17)$	$2500(8)$	$1340(7)$	$-4383(6)$
Cl	$6496(2)$	$440(2)$	$-134(1)$	$\mathrm{C}(18)$	$2152(7)$	$1894(7)$	$-3391(6)$
$\mathrm{P}(1)$	$2443(2)$	$2120(2)$	$-1228(1)$	$\mathrm{C}(19)$	$3068(7)$	$3110(6)$	$2790(5)$
$\mathrm{P}(2)$	$4503(2)$	$2930(1)$	$2233(1)$	$\mathrm{C}(20)$	$2625(8)$	$4179(7)$	$3526(6)$
$\mathrm{C}(1)$	$769(7)$	$1679(6)$	$-1487(5)$	$\mathrm{C}(21)$	$1500(9)$	$4233(8)$	$3900(7)$
$\mathrm{C}(2)$	$495(8)$	$1507(7)$	$-653(6)$	$\mathrm{C}(22)$	$801(9)$	$3307(8)$	$3550(7)$
$\mathrm{C}(3)$	$-744(9)$	$1175(8)$	$-786(7)$	$\mathrm{C}(23)$	$1224(9)$	$2247(8)$	$2828(7)$
$\mathrm{C}(4)$	$-1745(9)$	$986(8)$	$-1770(7)$	$\mathrm{C}(24)$	$2369(8)$	$2144(7)$	$2429(6)$
$\mathrm{C}(5)$	$-1476(9)$	$1138(8)$	$-2618(7)$	$\mathrm{C}(25)$	$4623(7)$	$4432(6)$	$2472(5)$
$\mathrm{C}(6)$	$-241(8)$	$1475(7)$	$-2487(6)$	$\mathrm{C}(26)$	$5683(8)$	$5044(7)$	$3324(6)$
$\mathrm{C}(7)$	$2041(7)$	$3663(6)$	$-1117(6)$	$\mathrm{C}(27)$	$5706(9)$	$6209(8)$	$3478(7)$
$\mathrm{C}(8)$	$3173(8)$	$4175(8)$	$-985(7)$	$\mathrm{C}(28)$	$4696(9)$	$6757(8)$	$2816(7)$
$\mathrm{C}(9)$	$2950(10)$	$5320(9)$	$-972(8)$	$\mathrm{C}(29)$	$3642(9)$	$6160(8)$	$1980(7)$
$\mathrm{C}(10)$	$1668(11)$	$5964(9)$	$-1016(8)$	$\mathrm{C}(30)$	$3615(8)$	$4990(7)$	$1800(6)$
$\mathrm{C}(11)$	$522(12)$	$5469(11)$	$-128(9)$	$\mathrm{C}(31)$	$6054(7)$	$2525(6)$	$3229(5)$
$\mathrm{C}(12)$	$728(9)$	$4299(8)$	$-1162(7)$	$\mathrm{C}(32)$	$6120(7)$	$2871(7)$	$4313(6)$
$\mathrm{C}(13)$	$2864(7)$	$1467(6)$	$-2528(5)$	$\mathrm{C}(33)$	$7341(8)$	$2541(7)$	$5038(6)$
$\mathrm{C}(14)$	$3941(7)$	$533(6)$	$-2655(6)$	$\mathrm{C}(34)$	$8478(9)$	$1872(8)$	$4652(7)$
$\mathrm{C}(15)$	$4285(8)$	$12(7)$	$-3656(6)$	$\mathrm{C}(35)$	$8409(9)$	$1536(8)$	$3562(7)$
$\mathrm{C}(16)$	$3545(8)$	$412(7)$	$-4495(6)$	$\mathrm{C}(36)$	$7192(7)$	$1857(7)$	$2841(6)$

Table 2. Interatomic distances (\AA) and angles (${ }^{\circ}$) in $\left[\mathrm{Ag}\left(\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{P}_{2}\right) \mathrm{Cl}\right]_{2}$

Standard deviations are given in parentheses. For notation, see Fig. 1.

$\mathrm{Ag}-\mathrm{Ag}^{\prime}$	3.840 (2)	$\mathrm{Cl}-\mathrm{Cl}^{\prime}$	3.710 (2)
Silver coordination			
$\mathrm{Ag}-\mathrm{P}(1)$	2.467 (2)	$\mathrm{Ag}-\mathrm{Cl}$	2.596 (2)
$-\mathrm{P}(2)$	2.472 (2)	$-\mathrm{Cl}^{\prime}$	2.741 (2)
Phosphorus coordination			
$\mathrm{P}(1)-\mathrm{Ag}$	2.467 (2)	$\mathrm{P}(2)-\mathrm{Ag}$	2.472 (2)
-C(1)	1.823 (7)	-C(19)	1.822 (7)
-C(7)	1.835 (8)	-C(25)	1.818 (7)
-C(13)	1.818 (7)	-C(31)	1.826 (7)

Mean $\mathrm{C}-\mathrm{C}$ distances in the phenyl rings*

$1.384(4)$	$1.391(9)$	$1.392(7)$	$1.401(8)$
$1.395(7)$	$1.388(4)$		

Mean $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles in the phenyl rings*

$119.9(7)$	$120.0(3)$	$120 \cdot 0(4)$	$119.9(6)$
$120 \cdot 0(1)$	$120 \cdot 0(3)$		

Angle in the double bridge

$$
\mathrm{Ag}-\mathrm{Cl}-\mathrm{Ag}^{\prime} \quad 91.97
$$

Angles in the distorted tetrahedra around the Ag and P atoms

$\mathrm{P}(1)-\mathrm{Ag}-\mathrm{P}(2)$	$122.91(7)$	$\mathrm{P}(2)-\mathrm{Ag}-\mathrm{Cl}$	$113.92(7)$
$\mathrm{P}(1)-\mathrm{Ag}-\mathrm{Cl}^{\prime}$	$103.59(7)$	$\mathrm{P}(2)-\mathrm{Ag}-\mathrm{Cl}^{\prime}$	$108 \cdot 70(7)$
$\mathrm{P}(1)-\mathrm{Ag}-\mathrm{Cl}$	$112.97(7)$	$\mathrm{Cl}-\mathrm{Ag}-\mathrm{Cl}^{\prime}$	$88.03(6)$
$\mathrm{Ag}-\mathrm{P}(1)-\mathrm{C}(1)$	$110.7(2)$	$\mathrm{Ag}-\mathrm{P}(2)-\mathrm{C}(19)$	$114.3(2)$
$\mathrm{Ag}-\mathrm{P}(1)-\mathrm{C}(7)$	$117.6(2)$	$\mathrm{Ag}-\mathrm{P}(2)-\mathrm{C}(25)$	$115 \cdot 3(2)$
$\mathrm{Ag}-\mathrm{P}(1)-\mathrm{C}(13)$	$116.3(2)$	$\mathrm{Ag}-\mathrm{P}(2)-\mathrm{C}(31)$	$116.2(2)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(7)$	$105.2(3)$	$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(25)$	$102 \cdot 0(3)$
$\mathrm{C}(1)-\mathrm{P}(1)-\mathrm{C}(13)$	$105.4(3)$	$\mathrm{C}(19)-\mathrm{P}(2)-\mathrm{C}(31)$	$104 \cdot 1(3)$
$\mathrm{C}(7)-\mathrm{P}(1)-\mathrm{C}(13)$	$100.2(3)$	$\mathrm{C}(25)-\mathrm{P}(2)-\mathrm{C}(31)$	$103.2(3)$

$$
\begin{aligned}
& \text { * The mean values of the distances and angles in the phenyl rings } \\
& (\bar{b}) \text { and corresponding mean values of the standard deviations } \sigma(\bar{b}) \\
& \text { are calculated according to the formulae: } \\
& \qquad \dot{b}=\sum_{i=1}^{6} \frac{b_{i}}{\sigma_{i}^{2}} \sum_{i=1}^{6} \frac{1}{\sigma_{i}^{2}}, \\
& \qquad \sigma(\bar{b})=\left\{\frac{1}{5}\left[\sum_{i=1}^{6}\left(b_{i}-\bar{b}\right)^{2} \frac{1}{\sigma_{i}^{2}} \sum_{i=1}^{6} \frac{1}{\sigma_{i}^{2}}\right]\right\}^{1 / 2} .
\end{aligned}
$$

similar dimeric molecules (Aurivillius, Cassel \& Fälth, 1974; Cassel, 1976).
The $\mathrm{Ag}-\mathrm{P}$ distances [2.467 (2) and 2.472 (2) \AA] are also in good agreement with values found in similar compounds containing two P atoms (Aurivillius, Cassel \& Fälth, 1974; Cassel, 1975, 1976; Teo \& Calabrese, 1976). In the latter, $\left[\mathrm{AgBr}\left(\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{P}_{2}\right)\right]_{2} . \mathrm{CHCl}_{3}$, ' AgBrP_{2} ', one $\mathrm{Ag}-\mathrm{P}$ distance is somewhat elongated [2.513 (7) \AA] compared with those in ' AgClP_{2} '. The $\mathrm{Ag}-\mathrm{P}-\mathrm{C}$ angles in ' AgClP_{2} ' are all smaller and the $\mathrm{C}-\mathrm{P}-\mathrm{C}$ angles are all greater than $109 \cdot 5^{\circ}$ as a consequence of repulsive interactions between the phenyl

Table 3. Selected intramolecular distances (\AA) in $\left[\mathrm{Ag}\left(\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{P}_{2}\right) \mathrm{Cl}\right]_{2}$
$\mathrm{H} \cdot \mathrm{H}$ distances $<3.00 \AA$

H(C2) \cdots. ${ }^{(C 24}$)	$2 \cdot 56$	H(C26) \cdots (${ }^{\text {(C32 }}$)	$2 \cdot 88$
$\mathrm{H}(\mathrm{C} 6) \cdots \mathrm{H}(\mathrm{C} 18)$	$2 \cdot 36$	H (C32) $\cdot \cdots \mathrm{H}$ (C20)	2.79
H . . C distances <3.00 \AA			
H(C2) . . C (24)	2.93	$\mathrm{H}(\mathrm{C} 26) \cdots \mathrm{C}(31)$	2.56
H(C6) . . C ${ }^{\text {(13) }}$	2.83	H(C26) . . C ${ }^{\text {(32) }}$	2.71
H(C6) . . C ${ }^{\text {(18) }}$	$2 \cdot 60$	H(C30) . . C 7)	2.83
H(C12) . . C(1)	$2 \cdot 67$	H(C30) . . C (8)	2.98
H(C12) . . $\mathrm{C}(6)$	2.92	H(C32) . . C (19)	2.72
H(C18) . . C (7)	$2 \cdot 70$	H(C32) \cdots C(20)	2.79
$\mathrm{H}(\mathrm{C} 20) \cdots \mathrm{C}(25)$	$2 \cdot 60$	$\mathrm{H}(\mathrm{C} 35) \cdots \mathrm{C}(6)^{\prime}$	$2 \cdot 97$
C \cdots C distances $<3.50 \AA$			
C(15)' . . C (32)	3.47 (1)	$\mathrm{C}(14)^{\prime} \cdots \mathrm{C}(36)$	$3 \cdot 39$ (1)
$\mathrm{Cl} \cdots \mathrm{H}$ distances $<3.50 \AA$			
$\mathrm{Cl} \cdots \mathrm{H}(\mathrm{C} 2)^{\prime}$	3.04	$\mathrm{Cl} \cdots \mathrm{H}(\mathrm{C} 24)^{\prime}$	$2 \cdot 83$
$\mathrm{Cl} \cdots \mathrm{H}(\mathrm{C} 14)$	$2 \cdot 71$	$\mathrm{Cl} \cdots \mathrm{H}(\mathrm{C} 36)$	$2 \cdot 72$

rings. The $\mathrm{P}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}$ distances have normal values, as have the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angles (see Table 2).

Both the $\mathrm{Cl} \cdots \mathrm{Cl}$ and the $\mathrm{Br} \cdots \mathrm{Br}$ distances in ' AgClP_{2} ' and ' AgBrP_{2} ', respectively, are approximately $0.1 \AA$ longer than the corresponding van der Waals values (Pauling, 1960). This means that the halogen \cdots halogen repulsive interactions in the two compounds are similar and weak.

In both structures there are intramolecular nonbonding repulsions; however, for ' AgBrP_{2} ' no details of these are reported. In ' AgClP_{2} ' the intramolecular $\mathrm{H} \cdots \mathrm{H}, \mathrm{H} \cdots \mathrm{C}, \mathrm{C} \cdots \mathrm{C}$ and $\mathrm{Cl} \cdots \mathrm{H}$ distances were calculated and selected values are given in Table 3. On comparing these with the van der Waals distances reported in the literature (Pauling, 1960; Gieren \& Dederer, 1977), it is found that several $\mathrm{H} \cdots \mathrm{H}, \mathrm{C} \cdots \mathrm{H}$ and $\mathrm{Cl} \cdots \mathrm{H}$ distances have low values. The Cl atom which is the closest bonded to Ag is in close contact with $\mathrm{H}(\mathrm{C} 14), \mathrm{H}(\mathrm{C} 24)^{\prime}$ and $\mathrm{H}(\mathrm{C} 36)$. Close $\mathrm{H} \cdots \mathrm{H}$ and $\mathrm{H} \cdots \mathrm{C}$ contacts are $\mathrm{H}(\mathrm{C} 6)-\mathrm{H}(\mathrm{C} 18), \mathrm{H}(\mathrm{C} 6)-\mathrm{C}(18)$, $\mathrm{H}(\mathrm{C} 12)-\mathrm{C}(1), \mathrm{H}(\mathrm{C} 20)-\mathrm{C}(25)$ and $\mathrm{H}(\mathrm{C} 26)-\mathrm{C}(31)$. With a radius of $1.00 \AA$ for H there are still close contacts between Cl and $\mathrm{H}(\mathrm{C} 14), \mathrm{H}(\mathrm{C} 24)^{\prime}$ and H(C36).

There are noticeable differences between ' AgClP_{2} ' and ' $\mathrm{AgBrP} \mathrm{P}_{2}$ '. In the former the $\mathrm{Ag}-\mathrm{Ag}$ distance [$3.840(2) \AA$] is longer than that in the latter [3.720 (4) \AA]. In ' AgClP_{2} ', as mentioned above, the $\mathrm{Ag}-\mathrm{Cl}$ distances differ by $0.15 \AA$, whereas in ' AgBrP_{2} ' the $\mathrm{Ag}-\mathrm{Br}$ distances are equal.

As the Cl atom in ' AgClP_{2} ' is in close contact with three H atoms the replacement of the Cl atom by a Br should change these interactions. It is possible that the differences between ' AgClP_{2} ' and ' AgBrP ' ' could be explained from a more detailed study of the effect of this replacement on both inter- and intramolecular nonbonding repulsions.

The author thanks Dr Karin Aurivillius for valuable help. This investigation is part of a research project financially supported by the Swedish Natural Science Research Council.

References

Aurivillius, K., Cassel, A. \& Fälth, L. (1974). Chem. Scr. 5, 9-12.
Barrow, M., Bürgi, H. B., Johnson, D. K. \& Venanzı, L. M. (1976). J. Am. Chem. Soc. 98, 2356-2357.

Baur, W. H. (1972). Acta Cryst. B28, 1456-1465.
Cassel, A. (1975). Acta Cryst. B31, 1194-1196.
Cassel, A. (1976). Acta Cryst. B32, 2521-2523.
Gieren, A. \& Dederer, B. (1977). Acta Cryst. B33, 32963303.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 260. Ithaca: Cornell Univ. Press.
Teo, B.-K. \& Calabrese, J. C. (1976). J. Chem. Soc. Chem. Commun. pp. 185-186.

Acta Cryst. (1979). B35, 177-178

Tris(1-phenyl-3,5-dimethylpyrazole)silver(I) Nitrate

By R. H. P. Francisco, Y. P. Mascarehnas and J. R. Lechat
Universidade de São Paulo, Instituto de Física e Química de São Carlos, CP369, 13560 São Carlos, SP, Brazil

(Received 25 July 1978; accepted 12 September 1978)

Abstract

Ag}\left(\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2}\right)_{3}\right] \mathrm{NO}_{3}, \mathrm{C}_{33} \mathrm{H}_{36} \mathrm{AgN}_{7} \mathrm{O}_{3}\), trigonal, $R 3$, hexagonal axis: $a=15.30$ (2), $c=11.87$ (1) $\AA, \gamma=120.0(2)^{\circ}, V=2406 \AA^{3}, Z=3, D_{m}=1.40$ (flotation), $D_{x}=1.42 \mathrm{Mg} \mathrm{m}^{-3}$. The final R was 0.047 . The coordination around the Ag^{+}corresponds to a trigonal bipyramid with the three N atoms of the ligands in the equatorial plane and NO_{3}^{-}groups at the apices.

Introduction. The crystals were prepared by Dr M . Molina and co-workers (Institute of Chemistry of Araraquara, UNESP). They are white and opaque, with prismatic habit. Chemical analysis showed a composition ratio of $1: 3$ between Ag^{+}and the ligands (Molina, Angst, Garcia \& Melios, 1972). The structure determination was undertaken in order to study the coordination around Ag^{+}and the interaction between Ag^{+} and NO_{3}^{-}. Cell dimensions were determined by a leastsquares fit to settings for 25 reflexions ($\pm h k l$) on a CAD-4 automatic diffractometer. Intensity measurements were carried out up to 30° in θ, with graphitemonochromated Mo $K \alpha$ radiation and a crystal in the form of an elongated block $0.5 \times 0.3 \times 0.8 \mathrm{~mm}$. Lorentz and polarization corrections were applied but no absorption correction $\left[\mu(\mathrm{Mo} K \alpha)=0.66 \mathrm{~mm}^{-1}\right.$] was made. 909 unique reflections were collected and after application of the acceptance criterion $F^{2} \geq 2 \sigma\left(F^{2}\right)$, 898 reflexions were retained for use in the structure analysis.*

[^2]The structure was solved by application of direct methods, using the program MULTAN (Germain, Main \& Woolfson, 1971) and difference Fourier calculations. It was refined by a full-matrix leastsquares method by minimization of $\sum w\left(k\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ until all the atomic parameter shifts were smaller than a standard deviation. The final unweighted R factor omitting unobserved reflections is 0.047 and including them is 0.049 . Anisotropic temperature factors were assigned to all non-hydrogen atoms. Complex neutralatom scattering factors were employed (International Tables for X-ray Crystallography, 1974). Final positional parameters are shown in Table 1.

Discussion. The Ag^{+}and the N of the nitrate group lie on the threefold axis.

Table 1. Fractional atomic coordinates $\left(\times 10^{4}\right)$ with their e.s.d.'s

	x	y	z
$\mathrm{Ag}(1)$	0	0	0
$\mathrm{O}(1)$	$10(10)$	$741(9)$	$5500(10)$
$\mathrm{N}(3)$	0	0	$4906(62)$
$\mathrm{N}(1)$	$2281(3)$	$1833(3)$	$427(4)$
$\mathrm{N}(2)$	$1689(3)$	$924(3)$	$-77(4)$
$\mathrm{C}(3)$	$2310(4)$	$766(4)$	$-731(5)$
$\mathrm{C}(4)$	$3301(4)$	$1567(4)$	$-608(5)$
$\mathrm{C}(5)$	$3263(4)$	$2233(4)$	$128(5)$
$\mathrm{C}(6)$	$1839(4)$	$2205(4)$	$1205(5)$
$\mathrm{C}(7)$	$1313(5)$	$1628(6)$	$2114(7)$
$\mathrm{C}(8)$	$858(6)$	$1983(8)$	$2860(7)$
$\mathrm{C}(9)$	$943(6)$	$2922(8)$	$2664(9)$
$\mathrm{C}(10)$	$1480(7)$	$3488(7)$	$1786(12)$
$\mathrm{C}(11)$	$1936(6)$	$3151(5)$	$1042(8)$
$\mathrm{C}(12)$	$1922(6)$	$-159(6)$	$-1448(7)$
$\mathrm{C}(13)$	$4083(5)$	$3203(5)$	$598(8)$

[^0]: * Structures of Complexes between Metal Halides and Phosphinothioethers or Related Ligands. VIII.
 \dagger Present address: Inorganic Chemistry, Division of Mineral Processing, University of Luleả, S-95187 Luleå, Sweden.

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33955 (21 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

[^2]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33897 (6 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

